

I pilastri

Col termine "pilastri" indichiamo quegli elementi architettonici verticali portanti con funzione di trasferimento di carichi e sollecitazioni dalla sovrastruttura agli elementi sottostanti e che hanno sezioni ridotte rispetto al loro sviluppo in altezza.

La *colonna* è spesso intesa come un pilastro a sezione circolare, ovale o ellittica mentre il *setto* viene inteso come un elemento verticale a base rettangolare più allungato rispetto ai pilastri. La *pila* (o *pilone*) è un termine comune per identificare pilastri di notevoli dimensioni in sezione e mole.

Il pilastro, piccoli volumi molto importanti

Un pilastro è una tipologia di opera che, grazie alle piccole quantità collegate, è solitamente poco influente sui costi di realizzazione complessivi di un cantiere. D'altra parte, in una classica struttura a telaio, la sua importanza strutturale è considerata da sempre primaria.

I pilastri sono caratterizzati da problematiche realizzative (altezza di getto, densità di armature, difficoltà di vibrazione, durata dello scarico) che possono arrivare a pregiudicare il risultato finale. La richiesta di un calcestruzzo idoneo per pilastri non sconvolge i conti del cantiere ma può limitare sensibilmente i rischi realizzativi di un'opera.

Consistenza del calcestruzzo

Un calcestruzzo per pilastri deve essere in grado di riempire il suo cassero insinuandosi fra le armature ed aderendo ad esse. La classe di consistenza S5 è spesso necessaria, anche perché, oggi, queste armature possono essere molto dense.

Con casseri a tenuta, le versioni auto-compattanti (SCC) possono essere ulteriormente migliorative.

Diametro massimo dell'aggregato e armatura

Interferro e copriferro sono gli aspetti da valutare per la scelta di un diametro massimo che permetta un facile passaggio fra le armature e un buon riempimento del cassero.

Specialmente in zone con rischio sismico sensibile e quindi con armature molto dense, è oggi frequentissimo il ricorso a diametri massimi anche fortemente inferiori ai 32 mm.

Classe di esposizione e durabilità dell'opera

Solitamente la classe d'esposizione più indicata per i pilastri di bordo è XC3 o XC4 mentre negli ambienti interni può essere sufficiente anche una XC2. Operativamente può, però, essere controproducente differenziare il prodotto fra le due collocazioni visto che, al momento del getto, è frequente richiedere una fornitura di una sola betoniera per tutti i pilastri.

Tempo di scarico e mantenimento della consistenza

La consistenza richiesta è necessaria dal primo all'ultimo pilastro da realizzare.

I tempi di scarico per i pilastri sono spesso talmente lunghi che devono essere richiesti calcestruzzi specifici, caratterizzati da una capacità di mantenimento adeguata.

Finitura e difetti visivi dell'opera

Il getto di un pilastro comporta generalmente che il materiali caschi da 3 metri di altezza (anche di più), urtando ripetutamente sulle armature presenti e cercando comunque di riempire tutti gli spazi. La vibrazione può essere impossibile o quasi. Un calcestruzzo molto fluido e coeso e una casseratura attenta limitano il rischio di vespai, nidi di ghiaia o finitura non soddisfacente.

Dal cantiere: numeri per pensare

>60%

Il getto dei pilastri è storicamente considerato un getto lento. La stima del tempo di scarico è quindi un elemento fondamentale per la richiesta di un calcestruzzo idoneo, capace di mantenere la propria consistenza per tutta la durata dello scarico.

Ogni anno oltre il 60% delle betoniere destinate a pilastri registra tempi di scarico superiori ai 60 minuti dall'arrivo in cantiere e questo costituisce un elemento di rischio non trascurabile.

1 su 2

Oggi la maggioranza dei getti è pompata. Ogni anno circa l'80% dei volumi consegnati in cantiere sono pompati e concentrati nelle opere di dimensioni maggiori. Viceversa, nei getti di dimensioni limitate, questa percentuale diminuisce in quanto il pompaggio può essere giudicato troppo oneroso. Ancora oggi, a differenza di quanto accade per altre opere, quasi un pilastro su due è messo in opera col secchione, con inevitabile ulteriore allungamento di tempi di scarico.

6,4 m³/bet

Il getto dei pilastri è caratterizzato da un'alta frequenza di carichi ridotti. La quantità media trasportata supera di poco i 6 m³ nel caso di getto pompato. Nel caso di getti a secchione, tale media scende ancora e ogni betoniera trasporta mediamente, infatti, poco più di 5 m³.

Nonostante le quantità trasportate siano quindi ridotte, i tempi di scarico per i pilastri sono comunque fra i più lunghi registrati per le varie tipologie di opera.

35%

Circa il 35% dei pilastri con calcestruzzo Unical è consegnato in consistenza S5 o superiore.

Quasi due su tre delle nostre betoniere destinate a pilastri, sono richieste con diametro massimo uguale o più piccolo di 20 mm.

70′

Il tempo mediamente impiegato per lo scarico di una betoniera per i pilastri tramite pompaggio, si aggira intorno ai 70 minuti dall'arrivo in cantiere.

I classici calcestruzzi a listino non possono garantire un mantenimento della classe di consistenza richiesta per tempistiche così prolungate. È un aspetto da affrontare e approfondire esplicitamente in sede di trattativa per trovare una soluzione trasparente limitando il rischio di aggiunte in cantiere.

145'

Nel caso di scarico a secchione, i tempi arrivano quasi alle due ore (nell'80% delle volte viene superata l'ora), rendendo necessari prodotti con ottime capacità di mantenimento della consistenza.

Più le temperature sono elevate e maggiori sono i rischi connessi all'impiego di calcestruzzi ordinari perchè maggiore sarà la tendenza a perdere lavorabilità e consistenza nel tempo, a meno di non prendere precauzioni efficaci.

Unical S.p.A via Luigi Buzzi, 6 15033 Casale Monferrato [AL] Italia tel + 39 0142 416111 www.unicalcestruzzi.it

